Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2238542

ABSTRACT

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

2.
J Drug Target ; 30(8): 884-893, 2022 09.
Article in English | MEDLINE | ID: covidwho-2001024

ABSTRACT

Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Coronavirus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunisation with α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro did not induce any notable toxicity in immunised mice. The results demonstrated that mice immunised with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titre, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunised mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunised with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.


Subject(s)
Liposomes , Middle East Respiratory Syndrome Coronavirus , Animals , Galactosylceramides , Immunity , Mice
3.
J King Saud Univ Sci ; 34(5): 102124, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867392

ABSTRACT

Objectives: Here, we prepared a liposome-based vaccine formulation containing Middle East Respiratory Syndrome Coronavirus papain-like protease (MERS-CoV-PLpro). Methods: A persistent leukopenic condition was induced in mice by injecting cyclophosphamide (CYP) three days before each dose of immunization. Mice were immunized on days 0, 14 and 21 with α-GalCer-bearing MERS-CoV PLpro-encapsulated DPPC-liposomes (α-GalCer-MERS-PLpro-liposomes or MERS-CoV PLpo-encapsulated DPPC-liposomes (MERS-PLpro-liposomes), whereas the antigen emulsified in Alum (MERS-PLpro-Alum) was taken as a control. On day 26, the blood was taken from the immunized mice to analyze IgG titer, whereas the splenocytes were used to analyze the lymphocyte proliferation and the level of cytokines. In order to assess the memory immune response, mice were given a booster dose after 150 days of the last immunization. Results: The higher levels of MERS-CoV-PLpro-specific antibody titer, IgG2a and lymphocyte proliferation were noticed in mice immunized with α-GalCer-MERS-PLpro-liposomes. Besides, the splenocytes from mice immunized with α-GalCer-MERS-PLpro-liposomes produced larger amounts of IFN-γ as compared to the splenocytes from MERS-PLpro-liposomes or MERS- PLpro-Alum immunized mice. Importantly, an efficient antigen-specific memory immune response was observed in α-GalCer-MERS-PLpro-liposomes immunized mice. Conclusions: These findings suggest that α-GalCer-MERS-PLpro-liposomes may substantiate to be a successful vaccine formulation against MERS-CoV infection, particularly in immunocompromised individuals.

4.
Int J Biol Macromol ; 209(Pt A): 984-990, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1796725

ABSTRACT

MERS-CoV main protease (Mpro) is essential for the maturation of the coronavirus; therefore, considered a potential drug target. Detailed conformational information is essential to developing antiviral therapeutics. However, the conformation of MERS-CoV Mpro under different conditions is poorly characterized. In this study, MERS-CoV Mpro was recombinantly produced in E.coli and characterized its structural stability with respect to changes in pH and temperatures. The intrinsic and extrinsic fluorescence measurements revealed that MERS-CoV Mpro tertiary structure was exposed to the polar environment due to the unfolding of the tertiary structure. However, the secondary structure of MERS-CoV Mpro was gained at low pH because of charge-charge repulsion. Furthermore, differential scanning fluorometry studies of Mpro showed a single thermal transition at all pHs except at pH 2.0; no transitions were observed. The data from the spectroscopic studies suggest that the MERS-CoV Mpro forms a molten globule-like state at pH 2.0. Insilico studies showed that the covid-19 Mpro shows 96.08% and 50.65% similarity to that of SARS-CoV Mpro and MERS-CoV Mpro, respectively. This study provides a basic understanding of the thermodynamic and structural properties of MERS-CoV Mpro.


Subject(s)
Coronavirus 3C Proteases , Middle East Respiratory Syndrome Coronavirus , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/genetics , Protein Conformation , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL